.. function:: py__likelihood_pdaf Compute the likelihood of the observation for a given ensemble member. The function is used with the nonlinear filter NETF and particle filter. The likelihood depends on the assumed observation error distribution. For a Gaussian observation error, the likelihood is :math:`\exp(-0.5(\mathbf{y}-\mathbf{H}\mathbf{x})^\mathrm{T}R^{-1}(\mathbf{y}-\mathbf{H}\mathbf{x}))`. The vector :math:`\mathbf{y}-\mathbf{H}\mathbf{x} = \mathrm{resid}` is provided as an input argument. Parameters ---------- step: int Current time step dim_obs_p : int Dimension of the observation vector. obs_p: np.ndarray[np.float, dim=1] Observation vector. Shape: (dim_obs_p) resid: np.ndarray[np.float, dim=1] Residual vector between observations and state. Shape: (dim_obs_p) likely: float Likelihood of the observation Returns ------- likely: float Likelihood of the observation