pyPDAF.PDAF.omi_init_obscovar_cb

pyPDAF.PDAF.omi_init_obscovar_cb()

This is an internal PDAF-OMI function that is used as a call-back function to construct a full observation error covariance matrix used only in stochastic EnKF. This could be used to modify the observation variance when OMI is used with pyPDAF.PDAF.assimilate_xxx instead of pyPDAF.PDAF.omi_assimilate_xxx.

Parameters:
  • step (int) – Current time step

  • dim_obs (int) – Dimension of observation vector

  • dim_obs_p (int) – PE-local dimension of obs. vector

  • covar (ndarray[tuple[dim_obs, dim_obs], np.float64]) –

    Observation error covar. matrix

    The 1st-th dimension dim_obs is Dimension of observation vector The 2nd-th dimension dim_obs is Dimension of observation vector

  • m_state_p (ndarray[tuple[dim_obs_p], np.float64]) –

    Observation vector

    The array dimension dim_obs_p is PE-local dimension of obs. vector

  • isdiag (bool) – Whether matrix R is diagonal

Returns:

  • covar (ndarray[tuple[dim_obs, dim_obs], np.float64]) – Observation error covar. matrix

    The 1st-th dimension dim_obs is Dimension of observation vector The 2nd-th dimension dim_obs is Dimension of observation vector

  • isdiag (bool) – Whether matrix R is diagonal