pyPDAF.PDAF.omi_prodRinvA_hyb_l_cb¶
- pyPDAF.PDAF.omi_prodRinvA_hyb_l_cb()¶
This function is an internal PDAF-OMI function that is used as a call-back function to perform the matrix multiplication inverse of local observation error covariance and a matrix A in LKNETF. This could be used to modify the observation variance when OMI is used with pyPDAF.PDAF.assimilate_xxx instead of pyPDAF.PDAF.omi_assimilate_xxx.
- Parameters:
domain_p (int) – Index of current local analysis domain
step (int) – Current time step
dim_obs_l (int) – Dimension of local observation vector
rank (int) – Rank of initial covariance matrix
obs_l (ndarray[tuple[dim_obs_l], np.float64]) –
Local vector of observations
The array dimension dim_obs_l is Dimension of local observation vector.
alpha (float) – Hybrid weight
A_l (ndarray[tuple[dim_obs_l, rank], np.float64]) –
Input matrix
The1st-th dimension dim_obs_l is Dimension of local observation vector; the2nd-th dimension rank is Rank of initial covariance matrix.
C_l (ndarray[tuple[dim_obs_l, rank], np.float64]) –
Output matrix
The1st-th dimension dim_obs_l is Dimension of local observation vector; the2nd-th dimension rank is Rank of initial covariance matrix.
- Returns:
A_l (ndarray[tuple[dim_obs_l, rank], np.float64]) – Input matrix
The 1st-th dimension dim_obs_l is Dimension of local observation vector The 2nd-th dimension rank is Rank of initial covariance matrix
C_l (ndarray[tuple[dim_obs_l, rank], np.float64]) – Output matrix
The 1st-th dimension dim_obs_l is Dimension of local observation vector The 2nd-th dimension rank is Rank of initial covariance matrix