pyPDAF.PDAF.omi_weights_l¶
- pyPDAF.PDAF.omi_weights_l()¶
This function computes a weight vector according to the distances of observations from the local analysis domain with a vector of localisation radius.
- Parameters:
verbose (int) – Verbosity flag
locweight (int) –
- Types of localization function:
unit weight;
exponential;
5-th order polynomial;
5-th order polynomial with regulatioin using mean variance;
5-th order polynomial with regulatioin using variance of single observation point;
cradius (ndarray[tuple[nobs_l], np.float64]) –
Vector of localization cut-off radii; observation weight=0 if distance > cradius
The array dimension nobs_l is Number of local observations
sradius (ndarray[tuple[nobs_l], np.float64]) –
Vector of support radii of localization function. It has no impact if locweight=0; weight = exp(-d / sradius) if locweight=1; weight = 0 if d >= sradius else f(sradius, distance) if locweight in [2,3,4].
The array dimension nobs_l is Number of local observations
matA (ndarray[tuple[nobs_l, ncols], np.float64]) –
input matrix
The 1st-th dimension nobs_l is Number of local observations The 2nd-th dimension ncols is the number of columns
ivar_obs_l (ndarray[tuple[nobs_l], np.float64]) –
Local vector of inverse obs. variances (nobs_l)
The array dimension nobs_l is Number of local observations
dist_l (ndarray[tuple[nobs_l], np.float64]) –
Local vector of obs. distances (nobs_l)
The array dimension nobs_l is Number of local observations
- Returns:
weight_l – Output: vector of weights
The array dimension nobs_l is Number of local observations
- Return type:
ndarray[tuple[nobs_l], np.float64]