pyPDAF.PDAF.omit_obs_omi¶
- pyPDAF.PDAF.omit_obs_omi()¶
This function computes innovation and omit corresponding observations in assimilation if the innovation is too large. This function is used by some of the global filters, e.g. EnKF, LEnKF, PF, NETF, with OMI.
- Parameters:
state_p (ndarray[tuple[dim_p], np.float64]) –
on exit: PE-local forecast mean state
The array dimension dim_p is PE-local dimension of model state
ens_p (ndarray[tuple[dim_p, dim_ens], np.float64]) –
PE-local state ensemble
The 1st-th dimension dim_p is PE-local dimension of model state The 2nd-th dimension dim_ens is Size of ensemble
obs_p (ndarray[tuple[dim_obs_p], np.float64]) –
PE-local observation vector
The array dimension dim_obs_p is PE-local dimension of observation vector
py__init_obs_pdaf (Callable[step:int, dim_obs_p:int, observation_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Initialize observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of the observation vector
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- Callback Returns
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
compute_mean (int) –
compute mean; (0) state_p holds mean
screen (int) – Verbosity flag
- Returns:
state_p (ndarray[tuple[dim_p], np.float64]) – on exit: PE-local forecast mean state
The array dimension dim_p is PE-local dimension of model state
obs_p (ndarray[tuple[dim_obs_p], np.float64]) – PE-local observation vector
The array dimension dim_obs_p is PE-local dimension of observation vector