pyPDAF.PDAF.assimilate_lknetf¶
- pyPDAF.PDAF.assimilate_lknetf()¶
It is recommended to use
pyPDAF.PDAF.localomi_assimilate()
orpyPDAF.PDAF.localomi_assimilate_lknetf_nondiagR()
.PDAF-OMI modules require fewer user-supplied functions and improved efficiency.
A hybridised LETKF and LNETF [1] for a single DA step. The LNETF computes the distribution up to the second moment similar to Kalman filters but using a nonlinear weighting similar to particle filters. This leads to an equal weights assumption for the prior ensemble. The hybridisation with LETKF is expected to lead to improved performance for quasi-Gaussian problems. The function should be called at each model step.
The function is a combination of
pyPDAF.PDAF.put_state_lknetf()
andpyPDAF.PDAF.get_state()
.- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__init_obs_pdaf (if global adaptive forgetting factor type_forget=1 is used in
pyPDAF.PDAF.init()
)py__init_obsvar_pdaf (if global adaptive forgetting factor is used)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__g2l_state_pdaf
py__g2l_obs_pdaf (localise each ensemble member in observation space)
py__init_obs_l_pdaf
py__init_obsvar_l_pdaf (only called if local adaptive forgetting factor type_forget=2 is used)
py__prodRinvA_pdaf
py__likelihood_l_pdaf
core DA algorithm
py__l2g_state_pdaf
py__obs_op_pdaf (only called with HKN and HNK options called for each ensemble member)
py__likelihood_hyb_l_pda
py__init_obsvar_l_pdaf (only called if local adaptive forgetting factor type_forget=2 is used)
py__prodRinvA_hyb_l_pdaf
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.localomi_assimilate()
andpyPDAF.PDAF.localomi_assimilate_lknetf_nondiagR()
References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Collect state vector from model/any arrays to pdaf arrays
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
distribute a state vector from pdaf to the model/any arrays
- Callback Parameters
- dim_pint
PE-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
PE-local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
The primary purpose of this function is to obtain the dimension of the observation vector. In OMI, in this function, one also sets the properties of obs_f, read the observation vector from files, setting the observation error variance when diagonal observation error covariance matrix is used. The pyPDAF.PDAF.omi_gather_obs function is also called here.
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of PE-local observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__init_obs_pdaf (Callable[step:int, dim_obs_p:int, observation_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Initialize PE-local observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of the observation vector
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- Callback Returns
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
py__init_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, observation_l : ndarray[tuple[dim_obs_l], np.float64]]) –
Init. observation vector on local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Local size of the observation vector
- observation_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- Callback Returns
- observation_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_l:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
Preprocesse the ensemble before analysis and postprocess the ensemble before distributing to the model for next forecast
- Callback Parameters
- stepint
current time step (negative for call before analysis/preprocessing)
- dim_pint
PE-local state vector dimension
- dim_ensint
number of ensemble members
- dim_ens_lint
number of ensemble members run serially on each model task
- dim_obs_pint
PE-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
py__prodRinvA_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, rank:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], A_l : ndarray[tuple[dim_obs_l, rank], np.float64], C_l : ndarray[tuple[dim_obs_l, rank], np.float64]]) –
Provide product R^-1 A on local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- A_lndarray[tuple[dim_obs_l, rank], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
py__prodRinvA_hyb_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, dim_ens:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], gamma:float, A_l : ndarray[tuple[dim_obs_l, dim_ens], np.float64], C_l : ndarray[tuple[dim_obs_l, dim_ens], np.float64]]) –
Provide product R^-1 A on local analysis domain with hybrid weight
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- dim_ensint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- gammafloat
Hybrid weight provided by PDAF
- A_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Output matrix
py__init_n_domains_p_pdaf (Callable[step:int, n_domains_p:int]) –
Provide number of local analysis domains
- Callback Parameters
- stepint
current time step
- n_domains_pint
pe-local number of analysis domains
- Callback Returns
- n_domains_pint
pe-local number of analysis domains
py__init_dim_l_pdaf (Callable[step:int, domain_p:int, dim_l:int]) –
Init state dimension for local ana. domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- Callback Returns
- dim_lint
local state dimension
py__init_dim_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int]) –
Initialize dim. of obs. vector for local ana. domain
- Callback Parameters
- domain_pint
index of current local analysis domain
- stepint
current time step
- dim_obs_fint
full dimension of observation vector
- dim_obs_lint
local dimension of observation vector
- Callback Returns
- dim_obs_lint
local dimension of observation vector
py__g2l_state_pdaf (Callable[step:int, domain_p:int, dim_p:int, state_p : ndarray[tuple[dim_p], np.float64], dim_l:int, state_l : ndarray[tuple[dim_l], np.float64]]) –
Get state on local ana. domain from full state
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- Callback Returns
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
py__l2g_state_pdaf (Callable[step:int, domain_p:int, dim_l:int, state_l : ndarray[tuple[dim_l], np.float64], dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Init full state from state on local analysis domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
py__g2l_obs_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int, mstate_f : ndarray[tuple[dim_p], np.intc], dim_p:int, mstate_l : ndarray[tuple[dim_l], np.intc], dim_l:int]) –
Restrict full obs. vector to local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_fint
Size of full observation vector for model sub-domain
- dim_obs_lint
Size of observation vector for local analysis domain
- mstate_fndarray[tuple[dim_p], np.intc]
Full observation vector for model sub-domain
- dim_pint
Size of full observation vector for model sub-domain
- mstate_lndarray[tuple[dim_l], np.intc]
Observation vector for local analysis domain
- dim_lint
Size of observation vector for local analysis domain
- Callback Returns
- mstate_lndarray[tuple[dim_l], np.intc]
Observation vector for local analysis domain
py__init_obsvar_pdaf (Callable[step:int, dim_obs_p:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], meanvar:float]) –
Initialize mean observation error variance
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of observation vector
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- meanvarfloat
Mean observation error variance
- Callback Returns
- meanvarfloat
Mean observation error variance
py__init_obsvar_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_p], np.float64], dim_obs_p:int, meanvar_l:float]) –
Initialize local mean observation error variance
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Local dimension of observation vector
- obs_lndarray[tuple[dim_obs_p], np.float64]
Local observation vector
- dim_obs_pint
Dimension of local observation vector
- meanvar_lfloat
Mean local observation error variance
- Callback Returns
- meanvar_lfloat
Mean local observation error variance
py__likelihood_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], resid_l : ndarray[tuple[dim_obs_l], np.float64], likely_l:float]) –
Compute likelihood
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- resid_lndarray[tuple[dim_obs_l], np.float64]
nput vector holding the local residual
- likely_lfloat
Output value of the local likelihood
- Callback Returns
- likely_lfloat
Output value of the local likelihood
py__likelihood_hyb_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], resid_l : ndarray[tuple[dim_obs_l], np.float64], gamma:float, likely_l:float]) –
Compute likelihood with hybrid weight
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- resid_lndarray[tuple[dim_obs_l], np.float64]
Input vector holding the local residual
- gammafloat
Hybrid weight provided by PDAF
- likely_lfloat
Output value of the local likelihood
- Callback Returns
- likely_lfloat
Output value of the local likelihood
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Routine to provide number of forecast time steps until next assimilations, model physical time and end of assimilation cycles
- Callback Parameters
- stepnowint
the current time step given by PDAF
- nstepsint
number of forecast time steps until next assimilation; this can also be interpreted as number of assimilation function calls to perform a new assimilation
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of forecast time steps until next assimilation; this can also be interpreted as number of assimilation function calls to perform a new assimilation
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Returns:
flag – Status flag
- Return type:
int