pyPDAF.PDAF.diag_crps_mpi

pyPDAF.PDAF.diag_crps_mpi()

Obtain a continuous rank probability score for an ensemble.

The implementation is based on [1].

References

Parameters:
  • dim_p (int) – Dimension of state vector

  • dim_ens (int) – Ensemble size

  • element (int) – ID of element to be used. If element=0, mean values over all elements are computed

  • oens (ndarray[tuple[dim, dim_ens, ...], np.float64]) – State ensemble. shape: (dim_p, dim_ens)

  • obs (ndarray[tuple[dim, ...], np.float64]) – State ensemble. shape: (dim_p)

  • comm_filter (int) – MPI communicator for filter

  • mype_filter (int) – rank of MPI communicator

  • npes_filter (int) – size of MPI communicator

Returns:

  • crps (double) – CRPS

  • reli (double) – Reliability

  • pot_crps (double) – potential CRPS

  • uncert (double) – uncertainty

  • status (int) – Status flag (0=success)