pyPDAF.PDAF.local_put_state_en3dvar_lestkf¶
- pyPDAF.PDAF.local_put_state_en3dvar_lestkf()¶
It is recommended to use
pyPDAF.PDAF.localomi_put_state_en3dvar_lestkf()
orpyPDAF.PDAF.localomi_put_state_en3dvar_lestkf_nondiagR()
.PDAF-OMI modules require fewer user-supplied functions and improved efficiency.
3DEnVar for a single DA step without post-processing, distributing analysis, and setting next observation step, where the ensemble anomaly is generated by LESTKF.
Compared to
pyPDAF.PDAF.local_assimilate_en3dvar_lestkf()
, this function has noget_state()
call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. This function is typically used when there are not enough CPUs to run the ensemble in parallel, and some ensemble members have to be run serially. ThepyPDAF.PDAF.get_state()
function follows this function call to ensure the sequential DA.The background error covariance matrix is estimated by ensemble. The 3DEnVar only calculates the analysis of the ensemble mean. An LESTKF is used to generate ensemble perturbations. This function should be called at each model time step.
- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf
py__init_obs_pdaf
- Starting the iterative optimisation:
py__cvt_ens_pdaf
py__obs_op_lin_pdaf
py__prodRinvA_pdaf
py__obs_op_adj_pdaf
py__cvt_adj_ens_pdaf
core DA algorithm
py__cvt_ens_pdaf
- Perform LESTKF:
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__init_obs_pdaf (if global adaptive forgetting factor is used type_forget=1 in
pyPDAF.PDAF.init()
)py__init_obsvar_pdaf (if global adaptive forgetting factor is used)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__g2l_obs_pdaf (localise mean ensemble in observation space)
py__init_obs_l_pdaf
py__g2l_obs_pdaf (localise each ensemble member in observation space)
py__init_obsvar_l_pdaf (only called if local adaptive forgetting factor type_forget=2 is used)
py__prodRinvA_l_pdaf
core DA algorithm
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.localomi_put_state_en3dvar_lestkf()
andpyPDAF.PDAF.localomi_put_state_en3dvar_lestkf_nondiagR()
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Collect state vector from model/any arrays to pdaf arrays
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
The primary purpose of this function is to obtain the dimension of the observation vector. In OMI, in this function, one also sets the properties of obs_f, read the observation vector from files, setting the observation error variance when diagonal observation error covariance matrix is used. The pyPDAF.PDAF.omi_gather_obs function is also called here.
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of PE-local observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__init_obs_pdaf (Callable[step:int, dim_obs_p:int, observation_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Initialize observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of the observation vector
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- Callback Returns
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
py__prodRinvA_pdaf (Callable[step:int, dim_obs_p:int, rank:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], A_p : ndarray[tuple[dim_obs_p, rank], np.float64], C_p : ndarray[tuple[dim_obs_p, rank], np.float64]]) –
Provide product R^-1 A
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- A_pndarray[tuple[dim_obs_p, rank], np.float64]
Input matrix provided by PDAF
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
- Callback Returns
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
py__cvt_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cvec_ens:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], v_p : ndarray[tuple[dim_cvec_ens], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply control vector transform matrix (ensemble)
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local dimension of state
- dim_ensint
Ensemble size
- dim_cvec_ensint
Dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- v_pndarray[tuple[dim_cvec_ens], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
py__cvt_adj_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cv_ens_p:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cv_ens_p], np.float64]]) –
Apply adjoint control vector transform matrix (ensemble var)
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_ensint
Ensemble size
- dim_cv_ens_pint
PE-local dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local input vector
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
- Callback Returns
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Linearized observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Adjoint observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
py__init_dim_obs_f_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_f_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__init_obs_f_pdaf (Callable[step:int, dim_obs_f:int, observation_f : ndarray[tuple[dim_obs_f], np.float64]]) –
Initialize PE-local observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_fint
Size of the full observation vector
- observation_fndarray[tuple[dim_obs_f], np.float64]
Full vector of observations
- Callback Returns
- observation_fndarray[tuple[dim_obs_f], np.float64]
Full vector of observations
py__init_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, observation_l : ndarray[tuple[dim_obs_l], np.float64]]) –
Init. observation vector on local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Local size of the observation vector
- observation_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- Callback Returns
- observation_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
py__prodRinvA_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, rank:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], A_l : ndarray[tuple[dim_obs_l, rank], np.float64], C_l : ndarray[tuple[dim_obs_l, rank], np.float64]]) –
Provide product R^-1 A on local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- A_lndarray[tuple[dim_obs_l, rank], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
py__init_n_domains_p_pdaf (Callable[step:int, n_domains_p:int]) –
Provide number of local analysis domains
- Callback Parameters
- stepint
current time step
- n_domains_pint
pe-local number of analysis domains
- Callback Returns
- n_domains_pint
pe-local number of analysis domains
py__init_dim_l_pdaf (Callable[step:int, domain_p:int, dim_l:int]) –
Init state dimension for local ana. domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- Callback Returns
- dim_lint
local state dimension
py__init_dim_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int]) –
Initialize dim. of obs. vector for local ana. domain
- Callback Parameters
- domain_pint
index of current local analysis domain
- stepint
current time step
- dim_obs_fint
full dimension of observation vector
- dim_obs_lint
local dimension of observation vector
- Callback Returns
- dim_obs_lint
local dimension of observation vector
py__g2l_obs_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int, mstate_f : ndarray[tuple[dim_p], np.intc], dim_p:int, mstate_l : ndarray[tuple[dim_l], np.intc], dim_l:int]) –
Restrict full obs. vector to local analysis domain
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_fint
Size of full observation vector for model sub-domain
- dim_obs_lint
Size of observation vector for local analysis domain
- mstate_fndarray[tuple[dim_p], np.intc]
Full observation vector for model sub-domain
- dim_pint
Size of full observation vector for model sub-domain
- mstate_lndarray[tuple[dim_l], np.intc]
Observation vector for local analysis domain
- dim_lint
Size of observation vector for local analysis domain
- Callback Returns
- mstate_lndarray[tuple[dim_l], np.intc]
Observation vector for local analysis domain
py__init_obsvar_pdaf (Callable[step:int, dim_obs_p:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], meanvar:float]) –
Initialize mean observation error variance
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of observation vector
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- meanvarfloat
Mean observation error variance
- Callback Returns
- meanvarfloat
Mean observation error variance
py__init_obsvar_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_p], np.float64], dim_obs_p:int, meanvar_l:float]) –
Initialize local mean observation error variance
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Local dimension of observation vector
- obs_lndarray[tuple[dim_obs_p], np.float64]
Local observation vector
- dim_obs_pint
Dimension of local observation vector
- meanvar_lfloat
Mean local observation error variance
- Callback Returns
- meanvar_lfloat
Mean local observation error variance
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_l:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
Preprocesse the ensemble before analysis and postprocess the ensemble before distributing to the model for next forecast
- Callback Parameters
- stepint
current time step (negative for call before analysis/preprocessing)
- dim_pint
PE-local state vector dimension
- dim_ensint
number of ensemble members
- dim_ens_lint
number of ensemble members run serially on each model task
- dim_obs_pint
PE-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Returns:
outflag – Status flag
- Return type:
int