pyPDAF.PDAF.omi_assimilate_lenkf¶
- pyPDAF.PDAF.omi_assimilate_lenkf()¶
Covariance localised stochastic EnKF for a single DA step using diagnoal observation error covariance matrix.
See
pyPDAF.PDAF.omi_assimilate_lenkf_nondiagR()
for non-diagnoal observation error covariance matrix.This is the only scheme for covariance localisation in PDAF.
The implementation is based on [1].
This function should be called at each model time step. The function is a combination of
pyPDAF.PDAF.omi_put_state_lenkf()
andpyPDAF.PDAF.get_state()
.- The user-supplied function is executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__localize_pdaf
py__obs_op_pdaf (repeated to reduce storage)
core DA algorith
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to distribute a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__localize_covar_pdaf (Callable[dim_p:int, dim_obs:int, hp_p : ndarray[tuple[dim_obs, dim_p], np.float64], hph : ndarray[tuple[dim_obs, dim_obs], np.float64]]) –
Apply localization to HP and HPH^T
- Callback Parameters
- dim_pint
pe-local state dimension
- dim_obsint
number of observations
- hp_pndarray[tuple[dim_obs, dim_p], np.float64]
pe local part of matrix hp
- hphndarray[tuple[dim_obs, dim_obs], np.float64]
matrix hph
- Callback Returns
- hp_pndarray[tuple[dim_obs, dim_p], np.float64]
pe local part of matrix hp
- hphndarray[tuple[dim_obs, dim_obs], np.float64]
matrix hph
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Provide time step and time of next observation
- Callback Parameters
- stepnowint
number of the current time step
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Returns:
flag – Status flag
- Return type:
int