pyPDAF.PDAF.omi_assimilate_lknetf_nondiagR¶
- pyPDAF.PDAF.omi_assimilate_lknetf_nondiagR()¶
It is recommended to use
pyPDAF.PDAF.localomi_assimilate_lknetf_nondiagR()
orpyPDAF.PDAF.localomi_assimilate()
.PDAFlocal-OMI modules require fewer user-supplied functions and improved efficiency.
LKNETF [1] for a single DA step using non-diagnoal observation error covariance matrix. See
pyPDAF.PDAF.localomi_assimilate()
for using diagnoal observation error covariance matrix. The filter type is set inpyPDAF.PDAF.init()
. This function should be called at each model time step. The function is a combination ofpyPDAF.PDAF.omi_put_state_lknetf_nondiagR()
andpyPDAF.PDAF.get_state()
.- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__g2l_state_pdaf
py__prodRinvA_pdaf
py__likelihood_l_pdaf
core DA algorithm
py__l2g_state_pdaf
py__obs_op_pdaf (only called with HKN and HNK options called for each ensemble member)
py__likelihood_hyb_l_pda
py__prodRinvA_hyb_l_pdaf
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.localomi_assimilate()
andpyPDAF.PDAF.localomi_assimilate_lnetf_nondiagR()
.References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to distribute a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__init_n_domains_p_pdaf (Callable[step:int, n_domains_p:int]) –
Provide number of local analysis domains
- Callback Parameters
- stepint
current time step
- n_domains_pint
pe-local number of analysis domains
- Callback Returns
- n_domains_pint
pe-local number of analysis domains
py__init_dim_l_pdaf (Callable[step:int, domain_p:int, dim_l:int]) –
Init state dimension for local ana. domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- Callback Returns
- dim_lint
local state dimension
py__init_dim_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int]) –
Initialize dim. of obs. vector for local ana. domain
- Callback Parameters
- domain_pint
index of current local analysis domain
- stepint
current time step
- dim_obs_fint
full dimension of observation vector
- dim_obs_lint
local dimension of observation vector
- Callback Returns
- dim_obs_lint
local dimension of observation vector
py__prodRinvA_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, rank:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], A_l : ndarray[tuple[dim_obs_l, rank], np.float64], C_l : ndarray[tuple[dim_obs_l, rank], np.float64]]) –
Provide product R^-1 A
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- A_lndarray[tuple[dim_obs_l, rank], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
py__prodRinvA_hyb_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, dim_ens:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], gamma:float, A_l : ndarray[tuple[dim_obs_l, dim_ens], np.float64], C_l : ndarray[tuple[dim_obs_l, dim_ens], np.float64]]) –
Provide product R^-1 A on local analysis domain with hybrid weight
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- dim_ensint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- gammafloat
Hybrid weight provided by PDAF
- A_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, dim_ens], np.float64]
Output matrix
py__likelihood_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], resid_l : ndarray[tuple[dim_obs_l], np.float64], likely_l:float]) –
Compute observation likelihood for an ensemble member
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- resid_lndarray[tuple[dim_obs_l], np.float64]
nput vector holding the local residual
- likely_lfloat
Output value of the local likelihood
- Callback Returns
- likely_lfloat
Output value of the local likelihood
py__likelihood_hyb_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], resid_l : ndarray[tuple[dim_obs_l], np.float64], gamma:float, likely_l:float]) –
Compute likelihood with hybrid weight
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- resid_lndarray[tuple[dim_obs_l], np.float64]
Input vector holding the local residual
- gammafloat
Hybrid weight provided by PDAF
- likely_lfloat
Output value of the local likelihood
- Callback Returns
- likely_lfloat
Output value of the local likelihood
py__g2l_state_pdaf (Callable[step:int, domain_p:int, dim_p:int, state_p : ndarray[tuple[dim_p], np.float64], dim_l:int, state_l : ndarray[tuple[dim_l], np.float64]]) –
Get state on local ana. domain from full state
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- Callback Returns
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
py__l2g_state_pdaf (Callable[step:int, domain_p:int, dim_l:int, state_l : ndarray[tuple[dim_l], np.float64], dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Init full state from state on local analysis domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Provide time step and time of next observation
- Callback Parameters
- stepnowint
number of the current time step
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Returns:
outflag – Status flag
- Return type:
int