pyPDAF.PDAF.sample_ens¶
- pyPDAF.PDAF.sample_ens()¶
Generate an ensemble from singular values and their vectors (EOF modes) of an ensemble anomaly matrix.
The singular values and vectors are derived from the ensemble anomalies. This ensemble anomaly can be obtained from a time anomaly of a model trajectory using
pyPDAF.PDAF.eofcovar()
.- Parameters:
dim (int) – Size of the state vector
dim_ens (int) – Ensemble size
modes (ndarray[tuple[dim, dim_ens-1, ...], np.float64]) – array of EOF modes/matrix of singular vectors.
svals (ndarray[tuple[dim_ens-1, ...], np.float64]) – singular values.
state (ndarray[tuple[dim, ...], np.float64]) – PE-local model mean state.
verbose (int) – Verbosity flag
flag (int) – Status flag
- Returns:
modes (ndarray[tuple[dim, dim_ens-1, …], np.float64]) – array of EOF modes/matrix of singular vectors
The 1st-th dimension dim is size of state vector
state (ndarray[tuple[dim, …], np.float64]) – PE-local model mean state
The array dimension dim is size of state vector
ens (ndarray[tuple[dim, dim_ens, …], np.float64]) – State ensemble
The 1st-th dimension dim is size of state vector The 2nd-th dimension dim_ens is size of ensemble
flag (int) – Status flag