pyPDAF.assim_offline¶
- pyPDAF.assim_offline()¶
Offline ensemble filters and smoothers except for 3DVars for a single DA step using diagnoal observation error covariance matrix.
Here, this function call is used for global stochastic EnKF [1], E(S)TKF [2], EAKF, EnSRF, SEEK [2], SEIK [2], NETF [3], and particle filter [4]. The filter type is set in
pyPDAF.PDAF.init()
. This function should be called at each model time step.- User-supplied functions are executed in the following sequence:
py__prepoststep_state_pdaf
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
core DA algorithm
py__prepoststep_state_pdaf
References
- Parameters:
py__collect_state_pdaf (Callable) – Routine to collect a state vector
py__distribute_state_pdaf (Callable) – Routine to distribute a state vector
py__init_dim_obs_pdaf (Callable) – Initialize dimension of full observation vector
py__obs_op_pdaf (Callable) – Full observation operator
py__init_n_domains_p_pdaf (Callable) – Provide number of local analysis domains
py__init_dim_l_pdaf (Callable) – Init state dimension for local ana. domain
py__init_dim_obs_l_pdaf (Callable) – Initialize local dimimension of obs. vector
py__prepoststep_pdaf (Callable) – User supplied pre/poststep routine
py__next_observation_pdaf (Callable) – Provide information on next forecast
outflag (int) – Status flag
- Returns:
outflag – Status flag
- Return type:
int