pyPDAF.assimilate_enkf_nondiagr¶
- pyPDAF.assimilate_enkf_nondiagr()¶
Online assimilation of global or Covariance localised stochastic EnKF for a single DA step using non-diagonal observation error covariance matrix.
See
pyPDAF.PDAF3.assimilate()
for diagonal observation error covariance matrix.This stochastic EnKF is implemented based on [1]
This is the only scheme for covariance localisation with non-diagonal observation error covariance matrix in PDAF.
- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__localize_pdaf
py__add_obs_err_pdaf
py__init_obscovar_pdaf
py__obs_op_pdaf (repeated to reduce storage)
core DA algorith
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
References
- Parameters:
py__collect_state_pdaf (Callable) – Routine to collect a state vector
py__distribute_state_pdaf (Callable) – Routine to distribute a state vector
py__init_dim_obs_pdaf (Callable) – Initialize dimension of full observation vector
py__obs_op_pdaf (Callable) – Full observation operator
py__add_obs_err_pdaf (Callable) – Add observation error covariance matrix
py__init_obs_covar_pdaf (Callable) – Initialize mean observation error variance
py__prepoststep_pdaf (Callable) – User supplied pre/poststep routine
py__next_observation_pdaf (Callable) – Provide information on next forecast
- Returns:
outflag – Status flag
- Return type:
int