pyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf_nondiagR¶
- pyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf_nondiagR()¶
3DEnVar for a single DA step where the ensemble anomaly is generated by LESTKF using non-diagnoal observation error covariance matrix.
Here, the background error covariance matrix is estimated by ensemble. The 3DEnVar only calculates the analysis of the ensemble mean. An LESTKF is used to generate ensemble perturbations. This function should be called at each model time step.
The function is a combination of
pyPDAF.PDAF.localomi_put_state_en3dvar_lestkf_nondiagR()
andpyPDAF.PDAF.get_state()
.- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf
- Starting the iterative optimisation:
py__cvt_ens_pdaf
py__obs_op_lin_pdaf
py__prodRinvA_pdaf
py__obs_op_adj_pdaf
py__cvt_adj_ens_pdaf
core DA algorithm
py__cvt_ens_pdaf
- Perform LESTKF:
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__prodRinvA_l_pdaf
core DA algorithm
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Collect state vector from model/any arrays to pdaf arrays
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
distribute a state vector from pdaf to the model/any arrays
- Callback Parameters
- dim_pint
PE-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
PE-local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
The primary purpose of this function is to obtain the dimension of the observation vector. In OMI, in this function, one also sets the properties of obs_f, read the observation vector from files, setting the observation error variance when diagonal observation error covariance matrix is used. The pyPDAF.PDAF.omi_gather_obs function is also called here.
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Full observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of PE-local observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__prodRinvA_pdaf (Callable[step:int, dim_obs_p:int, rank:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], A_p : ndarray[tuple[dim_obs_p, rank], np.float64], C_p : ndarray[tuple[dim_obs_p, rank], np.float64]]) –
Provide product R^-1 A
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- A_pndarray[tuple[dim_obs_p, rank], np.float64]
Input matrix provided by PDAF
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
- Callback Returns
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
py__cvt_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cvec_ens:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], v_p : ndarray[tuple[dim_cvec_ens], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply control vector transform matrix to control vector
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local dimension of state
- dim_ensint
Ensemble size
- dim_cvec_ensint
Dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- v_pndarray[tuple[dim_cvec_ens], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
py__cvt_adj_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cv_ens_p:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cv_ens_p], np.float64]]) –
Apply adjoint control vector transform matrix
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_ensint
Ensemble size
- dim_cv_ens_pint
PE-local dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local input vector
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
- Callback Returns
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Linearized observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Adjoint observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
py__prodRinvA_l_pdaf (Callable[domain_p:int, step:int, dim_obs_l:int, rank:int, obs_l : ndarray[tuple[dim_obs_l], np.float64], A_l : ndarray[tuple[dim_obs_l, rank], np.float64], C_l : ndarray[tuple[dim_obs_l, rank], np.float64]]) –
Provide product R^-1 A with localization
- Callback Parameters
- domain_pint
Index of current local analysis domain
- stepint
Current time step
- dim_obs_lint
Number of local observations at current time step (i.e. the size of the local observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_lndarray[tuple[dim_obs_l], np.float64]
Local vector of observations
- A_lndarray[tuple[dim_obs_l, rank], np.float64]
Input matrix provided by PDAF
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
- Callback Returns
- C_lndarray[tuple[dim_obs_l, rank], np.float64]
Output matrix
py__init_n_domains_p_pdaf (Callable[step:int, n_domains_p:int]) –
Provide number of local analysis domains
- Callback Parameters
- stepint
current time step
- n_domains_pint
pe-local number of analysis domains
- Callback Returns
- n_domains_pint
pe-local number of analysis domains
py__init_dim_l_pdaf (Callable[step:int, domain_p:int, dim_l:int]) –
Init state dimension for local ana. domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- Callback Returns
- dim_lint
local state dimension
py__init_dim_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int]) –
Initialize local dimimension of obs. vector
- Callback Parameters
- domain_pint
index of current local analysis domain
- stepint
current time step
- dim_obs_fint
full dimension of observation vector
- dim_obs_lint
local dimension of observation vector
- Callback Returns
- dim_obs_lint
local dimension of observation vector
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_l:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
Preprocesse the ensemble before analysis and postprocess the ensemble before distributing to the model for next forecast
- Callback Parameters
- stepint
current time step (negative for call before analysis/preprocessing)
- dim_pint
PE-local state vector dimension
- dim_ensint
number of ensemble members
- dim_ens_lint
number of ensemble members run serially on each model task
- dim_obs_pint
PE-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Routine to provide number of forecast time steps until next assimilations, model physical time and end of assimilation cycles
- Callback Parameters
- stepnowint
the current time step given by PDAF
- nstepsint
number of forecast time steps until next assimilation; this can also be interpreted as number of assimilation function calls to perform a new assimilation
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of forecast time steps until next assimilation; this can also be interpreted as number of assimilation function calls to perform a new assimilation
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
outflag (int) – Status flag
- Returns:
outflag – Status flag
- Return type:
int