pyPDAF.PDAF.omi_assimilate_hyb3dvar_estkf_nondiagR¶
- pyPDAF.PDAF.omi_assimilate_hyb3dvar_estkf_nondiagR()¶
Hybrid 3DEnVar for a single DA step using non-diagnoal observation error covariance matrix.
See
pyPDAF.PDAF.omi_assimilate_hyb3dvar_estkf()
for simpler user-supplied functions using diagonal observation error covariance matrix.Here the background error covariance is hybridised by a static background error covariance, and a flow-dependent background error covariance estimated from ensemble. The 3DVar generates an ensemble mean and the ensemble perturbation is generated by ESTKF in this implementation. This function should be called at each model time step.
The function is a combination of
pyPDAF.PDAF.omi_put_state_hyb3dvar_estkf_nondiagR()
andpyPDAF.PDAF.get_state()
.- The user-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf
- the iterative optimisation:
py__cvt_pdaf
py__cvt_ens_pdaf
py__obs_op_lin_pdaf
py__prodRinvA_pdaf
py__obs_op_adj_pdaf
py__cvt_adj_pdaf
py__cvt_adj_ens_pdaf
core 3DEnVar algorithm
py__cvt_pdaf
py__cvt_ens_pdaf
- Perform ESTKF:
py__init_dim_obs_pdaf
py__obs_op_pdaf (for ensemble mean)
py__obs_op_pdaf (for each ensemble member)
py__prodRinvA_pdaf
core ESTKF algorithm
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to distribute a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__prodRinvA_pdaf (Callable[step:int, dim_obs_p:int, rank:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], A_p : ndarray[tuple[dim_obs_p, rank], np.float64], C_p : ndarray[tuple[dim_obs_p, rank], np.float64]]) –
Provide product R^-1 A
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- A_pndarray[tuple[dim_obs_p, rank], np.float64]
Input matrix provided by PDAF
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
- Callback Returns
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
py__cvt_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cvec_ens:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], v_p : ndarray[tuple[dim_cvec_ens], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply ensemble control vector transform matrix to control vector
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local dimension of state
- dim_ensint
Ensemble size
- dim_cvec_ensint
Dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- v_pndarray[tuple[dim_cvec_ens], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
py__cvt_adj_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cv_ens_p:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cv_ens_p], np.float64]]) –
Apply adjoint ensemble control vector transform matrix
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_ensint
Ensemble size
- dim_cv_ens_pint
PE-local dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local input vector
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
- Callback Returns
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
py__cvt_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, cv_p : ndarray[tuple[dim_cvec], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply control vector transform matrix to control vector
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_cvecint
Dimension of control vector
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
py__cvt_adj_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cvec], np.float64]]) –
Apply adjoint control vector transform matrix
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_cvecint
Dimension of control vector
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
- Callback Returns
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Linearized observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Adjoint observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Provide time step, time and dimension of next observation
- Callback Parameters
- stepnowint
number of the current time step
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
outflag (int) – Status flag
- Returns:
outflag – Status flag
- Return type:
int