pyPDAF.PDAF.omi_assimilate_en3dvar_lestkf¶
- pyPDAF.PDAF.omi_assimilate_en3dvar_lestkf()¶
It is recommended to use
pyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf()
orpyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf_nondiagR()
.PDAFlocal-OMI modules require fewer user-supplied functions and improved efficiency.
3DEnVar for a single DA step where the ensemble anomaly is generated by LESTKF using diagnoal observation error covariance matrix. The background error covariance matrix is estimated by ensemble. The 3DEnVar only calculates the analysis of the ensemble mean. An LESTKF is used to generate ensemble perturbations. This function should be called at each model time step.
The function is a combination of
pyPDAF.PDAF.omi_put_state_en3dvar_lestkf()
andpyPDAF.PDAF.get_state()
.- The user-supplied function are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf
- Starting the iterative optimisation:
py__cvt_ens_pdaf
py__obs_op_lin_pdaf
py__obs_op_adj_pdaf
py__cvt_adj_ens_pdaf
core DA algorithm
py__cvt_ens_pdaf
- Perform LESTKF:
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__g2l_state_pdaf
core DA algorithm
py__l2g_state_pdaf
py__prepoststep_state_pdaf
py__distribute_state_pdaf
py__next_observation_pdaf
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf()
andpyPDAF.PDAF.localomi_assimilate_en3dvar_lestkf_nondiagR()
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__distribute_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to distribute a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of full observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Full observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__cvt_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cvec_ens:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], v_p : ndarray[tuple[dim_cvec_ens], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply control vector transform matrix to control vector
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local dimension of state
- dim_ensint
Ensemble size
- dim_cvec_ensint
Dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- v_pndarray[tuple[dim_cvec_ens], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local state increment
py__cvt_adj_ens_pdaf (Callable[iter:int, dim_p:int, dim_ens:int, dim_cv_ens_p:int, ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cv_ens_p], np.float64]]) –
Apply adjoint control vector transform matrix
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_ensint
Ensemble size
- dim_cv_ens_pint
PE-local dimension of control vector
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local input vector
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
- Callback Returns
- cv_pndarray[tuple[dim_cv_ens_p], np.float64]
PE-local result vector
py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Linearized observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Adjoint observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
py__init_n_domains_p_pdaf (Callable[step:int, n_domains_p:int]) –
Provide number of local analysis domains
- Callback Parameters
- stepint
current time step
- n_domains_pint
pe-local number of analysis domains
- Callback Returns
- n_domains_pint
pe-local number of analysis domains
py__init_dim_l_pdaf (Callable[step:int, domain_p:int, dim_l:int]) –
Init state dimension for local ana. domain
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- Callback Returns
- dim_lint
local state dimension
py__init_dim_obs_l_pdaf (Callable[domain_p:int, step:int, dim_obs_f:int, dim_obs_l:int]) –
Initialize local dimimension of obs. vector
- Callback Parameters
- domain_pint
index of current local analysis domain
- stepint
current time step
- dim_obs_fint
full dimension of observation vector
- dim_obs_lint
local dimension of observation vector
- Callback Returns
- dim_obs_lint
local dimension of observation vector
py__g2l_state_pdaf (Callable[step:int, domain_p:int, dim_p:int, state_p : ndarray[tuple[dim_p], np.float64], dim_l:int, state_l : ndarray[tuple[dim_l], np.float64]]) –
Get state on local ana. domain from full state
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- Callback Returns
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
py__l2g_state_pdaf (Callable[step:int, domain_p:int, dim_l:int, state_l : ndarray[tuple[dim_l], np.float64], dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Init full state from local state
- Callback Parameters
- stepint
current time step
- domain_pint
current local analysis domain
- dim_lint
local state dimension
- state_lndarray[tuple[dim_l], np.float64]
state vector on local analysis domain
- dim_pint
pe-local full state dimension
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local full state vector
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__next_observation_pdaf (Callable[stepnow:int, nsteps:int, doexit:int, time:float]) –
Provide time step, time and dimension of next observation
- Callback Parameters
- stepnowint
number of the current time step
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
- Callback Returns
- nstepsint
number of time steps until next obs
- doexitint
whether to exit forecasting (1 for exit)
- timefloat
current model (physical) time
outflag (int) – Status flag
- Returns:
outflag – Status flag
- Return type:
int