pyPDAF.PDAF.omi_put_state_3dvar¶
- pyPDAF.PDAF.omi_put_state_3dvar()¶
3DVar DA for a single DA step using diagnoal observation error covariance matrix without post-processing, distributing analysis, and setting next observation step.
See
pyPDAF.PDAF.omi_put_state_3dvar_nondiagR()
for non-diagonal observation error covariance matrix.Compared to
pyPDAF.PDAF.omi_assimilate_3dvar()
, this function has noget_state()
call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. ThepyPDAF.PDAF.get_state()
function follows this function call to ensure the sequential DA.When 3DVar is used, the background error covariance matrix has to be modelled for cotrol variable transformation. This is a deterministic filtering scheme so no ensemble and parallelisation is needed. This function should be called at each model time step.
- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf
- Iterative optimisation:
py__cvt_pdaf
py__obs_op_lin_pdaf
py__obs_op_adj_pdaf
py__cvt_adj_pdaf
core DA algorithm
py__cvt_pdaf
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__cvt_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, cv_p : ndarray[tuple[dim_cvec], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –
Apply control vector transform matrix to control vector
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_cvecint
Dimension of control vector
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
- Callback Returns
- Vv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
py__cvt_adj_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cvec], np.float64]]) –
Apply adjoint control vector transform matrix
- Callback Parameters
- iterint
Iteration of optimization
- dim_pint
PE-local observation dimension
- dim_cvecint
Dimension of control vector
- Vcv_pndarray[tuple[dim_p], np.float64]
PE-local result vector (state vector increment)
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
- Callback Returns
- cv_pndarray[tuple[dim_cvec], np.float64]
PE-local control vector
py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Linearized observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Adjoint observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
PE-local dimension of state
- dim_obs_pint
Dimension of observed state
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
- m_state_pndarray[tuple[dim_obs_p], np.float64]
PE-local observed state
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
PE-local model state
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
outflag (int) – Status flag
- Returns:
outflag – Status flag
- Return type:
int