pyPDAF.PDAF.omi_put_state_3dvar_nondiagR

pyPDAF.PDAF.omi_put_state_3dvar_nondiagR()

3DVar DA for a single DA step using non-diagnoal observation error covariance matrix without post-processing, distributing analysis, and setting next observation step.

See pyPDAF.PDAF.omi_put_state_3dvar() for simpler user-supplied functions using diagonal observation error covariance matrix.

Compared to pyPDAF.PDAF.omi_assimilate_3dvar_nondiagR(), this function has no get_state() call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. The pyPDAF.PDAF.get_state() function follows this function call to ensure the sequential DA.

When 3DVar is used, the background error covariance matrix has to be modelled for cotrol variable transformation. This is a deterministic filtering scheme so no ensemble and parallelisation is needed. This function should be called at each model time step.

User-supplied functions are executed in the following sequence:
  1. py__collect_state_pdaf

  2. py__prepoststep_state_pdaf

  3. py__init_dim_obs_pdaf

  4. py__obs_op_pdaf

  5. Iterative optimisation:
    1. py__cvt_pdaf

    2. py__obs_op_lin_pdaf

    3. py__prodRinvA_pdaf

    4. py__obs_op_adj_pdaf

    5. py__cvt_adj_pdaf

    6. core DA algorithm

  6. py__cvt_pdaf

Parameters:
  • py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –

    Routine to collect a state vector

    Callback Parameters
    • dim_pint
      • pe-local state dimension

    • state_pndarray[tuple[dim_p], np.float64]
      • local state vector

    Callback Returns
    • state_pndarray[tuple[dim_p], np.float64]
      • local state vector

  • py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –

    Initialize dimension of observation vector

    Callback Parameters
    • stepint
      • current time step

    • dim_obs_pint
      • dimension of observation vector

    Callback Returns
    • dim_obs_pint
      • dimension of observation vector

  • py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –

    Observation operator

    Callback Parameters
    • stepint
      • Current time step

    • dim_pint
      • Size of state vector (local part in case of parallel decomposed state)

    • dim_obs_pint
      • Size of observation vector

    • state_pndarray[tuple[dim_p], np.float64]
      • Model state vector

    • m_state_pndarray[tuple[dim_obs_p], np.float64]
      • Observed state vector (i.e. the result after applying the observation operator to state_p)

    Callback Returns
    • m_state_pndarray[tuple[dim_obs_p], np.float64]
      • Observed state vector (i.e. the result after applying the observation operator to state_p)

  • py__prodRinvA_pdaf (Callable[step:int, dim_obs_p:int, rank:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], A_p : ndarray[tuple[dim_obs_p, rank], np.float64], C_p : ndarray[tuple[dim_obs_p, rank], np.float64]]) –

    Provide product R^-1 A

    Callback Parameters
    • stepint
      • Current time step

    • dim_obs_pint
      • Number of observations at current time step (i.e. the size of the observation vector)

    • rankint
      • Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)

    • obs_pndarray[tuple[dim_obs_p], np.float64]
      • Vector of observations

    • A_pndarray[tuple[dim_obs_p, rank], np.float64]
      • Input matrix provided by PDAF

    • C_pndarray[tuple[dim_obs_p, rank], np.float64]
      • Output matrix

    Callback Returns
    • C_pndarray[tuple[dim_obs_p, rank], np.float64]
      • Output matrix

  • py__cvt_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, cv_p : ndarray[tuple[dim_cvec], np.float64], Vv_p : ndarray[tuple[dim_p], np.float64]]) –

    Apply control vector transform matrix to control vector

    Callback Parameters
    • iterint
      • Iteration of optimization

    • dim_pint
      • PE-local observation dimension

    • dim_cvecint
      • Dimension of control vector

    • cv_pndarray[tuple[dim_cvec], np.float64]
      • PE-local control vector

    • Vv_pndarray[tuple[dim_p], np.float64]
      • PE-local result vector (state vector increment)

    Callback Returns
    • Vv_pndarray[tuple[dim_p], np.float64]
      • PE-local result vector (state vector increment)

  • py__cvt_adj_pdaf (Callable[iter:int, dim_p:int, dim_cvec:int, Vcv_p : ndarray[tuple[dim_p], np.float64], cv_p : ndarray[tuple[dim_cvec], np.float64]]) –

    Apply adjoint control vector transform matrix

    Callback Parameters
    • iterint
      • Iteration of optimization

    • dim_pint
      • PE-local observation dimension

    • dim_cvecint
      • Dimension of control vector

    • Vcv_pndarray[tuple[dim_p], np.float64]
      • PE-local result vector (state vector increment)

    • cv_pndarray[tuple[dim_cvec], np.float64]
      • PE-local control vector

    Callback Returns
    • cv_pndarray[tuple[dim_cvec], np.float64]
      • PE-local control vector

  • py__obs_op_lin_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –

    Linearized observation operator

    Callback Parameters
    • stepint
      • Current time step

    • dim_pint
      • PE-local dimension of state

    • dim_obs_pint
      • Dimension of observed state

    • state_pndarray[tuple[dim_p], np.float64]
      • PE-local model state

    • m_state_pndarray[tuple[dim_obs_p], np.float64]
      • PE-local observed state

    Callback Returns
    • m_state_pndarray[tuple[dim_obs_p], np.float64]
      • PE-local observed state

  • py__obs_op_adj_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –

    Adjoint observation operator

    Callback Parameters
    • stepint
      • Current time step

    • dim_pint
      • PE-local dimension of state

    • dim_obs_pint
      • Dimension of observed state

    • state_pndarray[tuple[dim_p], np.float64]
      • PE-local model state

    • m_state_pndarray[tuple[dim_obs_p], np.float64]
      • PE-local observed state

    Callback Returns
    • state_pndarray[tuple[dim_p], np.float64]
      • PE-local model state

  • py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –

    User supplied pre/poststep routine

    Callback Parameters
    • stepint
      • current time step (negative for call after forecast)

    • dim_pint
      • pe-local state dimension

    • dim_ensint
      • size of state ensemble

    • dim_ens_pint
      • pe-local size of ensemble

    • dim_obs_pint
      • pe-local dimension of observation vector

    • state_pndarray[tuple[dim_p], np.float64]
      • pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)

    • uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
      • inverse of matrix u

    • ens_pndarray[tuple[dim_p, dim_ens], np.float64]
      • pe-local state ensemble

    • flagint
      • pdaf status flag

    Callback Returns
    • state_pndarray[tuple[dim_p], np.float64]
      • pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)

    • uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
      • inverse of matrix u

    • ens_pndarray[tuple[dim_p, dim_ens], np.float64]
      • pe-local state ensemble

  • outflag (int) – Status flag

Returns:

outflag – Status flag

Return type:

int