pyPDAF.PDAF.omi_put_state_nonlin_nondiagR¶
- pyPDAF.PDAF.omi_put_state_nonlin_nondiagR()¶
Global nonlinear filters for a single DA step using non-diagnoal observation error covariance matrix without post-processing, distributing analysis, and setting next observation step.
See
pyPDAF.PDAF.omi_put_state_global_nondiagR()
for simpler user-supplied functions using diagonal observation error covariance matrix.Here, this function call is used for global NETF [1], and particle filter [2]. The filter type is set in
pyPDAF.PDAF.init()
.Compared to
pyPDAF.PDAF.omi_assimilate_nonlin_nondiagR()
, this function has noget_state()
call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. This function is typically used when there are not enough CPUs to run the ensemble in parallel, and some ensemble members have to be run serially. ThepyPDAF.PDAF.get_state()
function follows this function call to ensure the sequential DA.This function should be called at each model time step.
- User-supplied functions are executed in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for ensemble mean)
py__obs_op_pdaf (for each ensemble member)
py__likelihood_pdaf
core DA algorithm
References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Collect state vector from model/any arrays to pdaf arrays
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
The primary purpose of this function is to obtain the dimension of the observation vector. In OMI, in this function, one also sets the properties of obs_f, read the observation vector from files, setting the observation error variance when diagonal observation error covariance matrix is used. The pyPDAF.PDAF.omi_gather_obs function is also called here.
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of PE-local observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__likelihood_pdaf (Callable[step:int, dim_obs_p:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], resid : ndarray[tuple[dim_obs_p], np.float64], likely:float]) –
Compute observation likelihood for an ensemble member
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- residndarray[tuple[dim_obs_p], np.float64]
Input vector holding the residual
- likelyfloat
Output value of the likelihood
- Callback Returns
- likelyfloat
Output value of the likelihood
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_l:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
Preprocesse the ensemble before analysis and postprocess the ensemble before distributing to the model for next forecast
- Callback Parameters
- stepint
current time step (negative for call before analysis/preprocessing)
- dim_pint
PE-local state vector dimension
- dim_ensint
number of ensemble members
- dim_ens_lint
number of ensemble members run serially on each model task
- dim_obs_pint
PE-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is generally not initialised in the case of ESTKF/ETKF/EnKF/SEIK, so it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
Inverse of the transformation matrix in ETKF and ESKTF; inverse of matrix formed by right singular vectors of error covariance matrix of ensemble perturbations in SEIK/SEEK. not used in EnKF.
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
PE-local ensemble
- Returns:
outflag – Status flag
- Return type:
int