pyPDAF.PDAF.put_state_seik¶
- pyPDAF.PDAF.put_state_seik()¶
It is recommended to use
pyPDAF.PDAF.omi_put_state_global()
orpyPDAF.PDAF.omi_put_state_global_nondiagR()
.PDAF-OMI modules require fewer user-supplied functions and improved efficiency.
This function will use singular evolutive interpolated Kalman filter [1] for a single DA step.
Compared to
pyPDAF.PDAF.assimilate_seik()
, this function has noget_state()
call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. This function is typically used when there are not enough CPUs to run the ensemble in parallel, and some ensemble members have to be run serially. ThepyPDAF.PDAF.get_state()
function follows this function call to ensure the sequential DA.The function should be called at each model step.
- The function executes the user-supplied functions in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for ensemble mean)
py__init_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__init_obsvar_pdaf (only relevant for adaptive forgetting factor schemes)
py__prodRinvA_pdaf
core DA algorithm
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.omi_put_state_global()
andpyPDAF.PDAF.omi_put_state_global_nondiagR()
References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__init_obs_pdaf (Callable[step:int, dim_obs_p:int, observation_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Initialize observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of the observation vector
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- Callback Returns
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__prodRinvA_pdaf (Callable[step:int, dim_obs_p:int, rank:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], A_p : ndarray[tuple[dim_obs_p, rank], np.float64], C_p : ndarray[tuple[dim_obs_p, rank], np.float64]]) –
Provide product R^-1 A
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- rankint
Number of the columns in the matrix processes here. This is usually the ensemble size minus one (or the rank of the initial covariance matrix)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- A_pndarray[tuple[dim_obs_p, rank], np.float64]
Input matrix provided by PDAF
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
- Callback Returns
- C_pndarray[tuple[dim_obs_p, rank], np.float64]
Output matrix
py__init_obsvar_pdaf (Callable[step:int, dim_obs_p:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], meanvar:float]) –
Initialize mean observation error variance
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of observation vector
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- meanvarfloat
Mean observation error variance
- Callback Returns
- meanvarfloat
Mean observation error variance
- Returns:
flag – Status flag
- Return type:
int