pyPDAF.PDAF.put_state_netf¶
- pyPDAF.PDAF.put_state_netf()¶
It is recommended to use
pyPDAF.PDAF.omi_put_state_global()
orpyPDAF.PDAF.omi_put_state_nonlin_nondiagR()
.PDAF-OMI modules require fewer user-supplied functions and improved efficiency.
This function will use Nonlinear Ensemble Transform Filter (NETF) [1] for a single DA step.
Compared to
pyPDAF.PDAF.assimilate_netf()
, this function has noget_state()
call. This means that the analysis is not post-processed, and distributed to the model forecast by user-supplied functions. The next DA step will not be assigned by user-supplied functions as well. This function is typically used when there are not enough CPUs to run the ensemble in parallel, and some ensemble members have to be run serially. ThepyPDAF.PDAF.get_state()
function follows this function call to ensure the sequential DA.The nonlinear filter computes the distribution up to the second moment similar to KF but using a nonlinear weighting similar to particle filter. This leads to an equal weights assumption for prior ensemble. The function should be called at each model step.
- This function executes the user-supplied function in the following sequence:
py__collect_state_pdaf
py__prepoststep_state_pdaf
py__init_dim_obs_pdaf
py__init_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
py__likelihood_pdaf
core DA algorithm
Deprecated since version 1.0.0: This function is replaced by
pyPDAF.PDAF.omi_put_state_global()
andpyPDAF.PDAF.omi_put_state_nonlin_nondiagR()
References
- Parameters:
py__collect_state_pdaf (Callable[dim_p:int, state_p : ndarray[tuple[dim_p], np.float64]]) –
Routine to collect a state vector
- Callback Parameters
- dim_pint
pe-local state dimension
- state_pndarray[tuple[dim_p], np.float64]
local state vector
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
local state vector
py__init_dim_obs_pdaf (Callable[step:int, dim_obs_p:int]) –
Initialize dimension of observation vector
- Callback Parameters
- stepint
current time step
- dim_obs_pint
dimension of observation vector
- Callback Returns
- dim_obs_pint
dimension of observation vector
py__obs_op_pdaf (Callable[step:int, dim_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], m_state_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Observation operator
- Callback Parameters
- stepint
Current time step
- dim_pint
Size of state vector (local part in case of parallel decomposed state)
- dim_obs_pint
Size of observation vector
- state_pndarray[tuple[dim_p], np.float64]
Model state vector
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
- Callback Returns
- m_state_pndarray[tuple[dim_obs_p], np.float64]
Observed state vector (i.e. the result after applying the observation operator to state_p)
py__init_obs_pdaf (Callable[step:int, dim_obs_p:int, observation_p : ndarray[tuple[dim_obs_p], np.float64]]) –
Initialize observation vector
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Size of the observation vector
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- Callback Returns
- observation_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
py__prepoststep_pdaf (Callable[step:int, dim_p:int, dim_ens:int, dim_ens_p:int, dim_obs_p:int, state_p : ndarray[tuple[dim_p], np.float64], uinv : ndarray[tuple[dim_ens-1, dim_ens-1], np.float64], ens_p : ndarray[tuple[dim_p, dim_ens], np.float64], flag:int]) –
User supplied pre/poststep routine
- Callback Parameters
- stepint
current time step (negative for call after forecast)
- dim_pint
pe-local state dimension
- dim_ensint
size of state ensemble
- dim_ens_pint
pe-local size of ensemble
- dim_obs_pint
pe-local dimension of observation vector
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
- flagint
pdaf status flag
- Callback Returns
- state_pndarray[tuple[dim_p], np.float64]
pe-local forecast/analysis state (the array ‘state_p’ is not generally not initialized in the case of seik. it can be used freely here.)
- uinvndarray[tuple[dim_ens-1, dim_ens-1], np.float64]
inverse of matrix u
- ens_pndarray[tuple[dim_p, dim_ens], np.float64]
pe-local state ensemble
py__likelihood_pdaf (Callable[step:int, dim_obs_p:int, obs_p : ndarray[tuple[dim_obs_p], np.float64], resid : ndarray[tuple[dim_obs_p], np.float64], likely:float]) –
Compute observation likelihood for an ensemble member
- Callback Parameters
- stepint
Current time step
- dim_obs_pint
Number of observations at current time step (i.e. the size of the observation vector)
- obs_pndarray[tuple[dim_obs_p], np.float64]
Vector of observations
- residndarray[tuple[dim_obs_p], np.float64]
Input vector holding the residual
- likelyfloat
Output value of the likelihood
- Callback Returns
- likelyfloat
Output value of the likelihood
- Returns:
flag – Status flag
- Return type:
int