pyPDAF.PDAFomi.init_dim_obs_l_noniso_locweights¶
- pyPDAF.PDAFomi.init_dim_obs_l_noniso_locweights()¶
Initialize the observation information corresponding to a non-isotropic local analysis domain.
One can set localization parameters, like the localization radius, for each observation type.
Here, each dimension can use a different localisation radius and a different localisation weight.
The function has to be called in user-supplied function of init_dim_obs_l_OBTYPE in each observation module if a domain-localized filter (LESTKF/LETKF/LNETF/LSEIK)is used.
It initialises the local observation information for PDAF-OMI for a single local analysis domain. This is used for isotropic localisation where the localisation radius is the same in all directions.
See also relevant PDAF wiki page as well as non-isotropic localisation page
- Parameters:
i_obs (int) – index of observation type
coords_l (ndarray[tuple[ncoord, ...], np.float64]) – Coordinates of current analysis domain The array dimension ncoord is number of coordinate dimension
locweights (ndarray[tuple[2, ...], np.intc]) – Types of localization function 0) unit weight; 1) exponential; 2) 5-th order polynomial; 3) 5-th order polynomial with regulatioin using mean variance; 4) 5-th order polynomial with regulatioin using variance of single observation point; The first dimension is horizontal weight function and the second is the vertical function
cradius (ndarray[tuple[ncoord, ...], np.float64]) – Vector of localization cut-off radii for each dimension; observation weight=0 if distance > cradius The array dimension ncoord is number of coordinate dimension
sradius (ndarray[tuple[ncoord, ...], np.float64]) – Vector of support radii of localization function for each dimension. It has no impact if locweight=0; weight = exp(-d / sradius) if locweight=1; weight = 0 if d >= sradius else f(sradius, distance) if locweight in [2,3,4]. The array dimension ncoord is number of coordinate dimension
cnt_obs_l (int) – Local dimension of current observation vector
- Returns:
cnt_obs_l – Local dimension of current observation vector
- Return type:
int