pyPDAF.PDAFomi.observation_localization_weights¶
- pyPDAF.PDAFomi.observation_localization_weights(i_obs: int, ncols: int, a_l: np.ndarray, dim_obs_l: int, verbose: int) np.ndarray¶
Returns a vector of observation localisation weights.
The weights are based on specifications given by localisation setups and observation coordinates in OMI. This function is used in the case of non-diagonal observation error covariance matrix where one has to perform localisation in user-supplied functions, e.g.,
pyPDAF.c__prodrinva_pdaf()orpyPDAF.c__likelihood_l_pdaf().Here, a_l is typically the input array in
pyPDAF.c__prodrinva_pdaf().- Parameters:
i_obs (int) – index into observation arrays
ncols (int) – Rank of initial covariance matrix
a_l (ndarray[np.float64, ndim=2]) – Input matrix (thisobs_l%dim_obs_l, ncols) Array shape: (:, :)
dim_obs_l (int) – Dimension of local observation vector of the i_obs-th observation type
verbose (int) – Verbosity flag
- Returns:
weight – > Localization weights Array shape: (thisobs_l(i_obs)%dim_obs_l)
- Return type:
ndarray[np.float64, ndim=1]