pyPDAF.assim_offline_enkf_nondiagr

pyPDAF.assim_offline_enkf_nondiagr()

Offline assimilation of global or Covariance localised stochastic EnKF for a single DA step using non-diagonal observation error covariance matrix.

See pyPDAF.PDAF3.assim_offline() for diagonal observation error covariance matrix.

This stochastic EnKF is implemented based on [1]

This is the only scheme for covariance localisation with non-diagonal observation error covariance matrix in PDAF.

User-supplied functions are executed in the following sequence:
  1. py__prepoststep_state_pdaf

  2. py__init_dim_obs_pdaf

  3. py__obs_op_pdaf (for each ensemble member)

  4. py__localize_pdaf

  5. py__add_obs_err_pdaf

  6. py__init_obscovar_pdaf

  7. py__obs_op_pdaf (repeated to reduce storage)

  8. core DA algorithm

  9. py__prepoststep_state_pdaf

References

Parameters:
  • py__init_dim_obs_pdaf (Callable) – Initialize dimension of full observation vector

  • py__obs_op_pdaf (Callable) – Full observation operator

  • py__add_obs_err_pdaf (Callable) – Add observation error covariance matrix

  • py__init_obs_covar_pdaf (Callable) – Initialize mean observation error variance

  • py__prepoststep_pdaf (Callable) – User supplied pre/poststep routine

Returns:

outflag – Status flag

Return type:

int