pyPDAF.assim_offline_lknetf_nondiagr¶
- pyPDAF.assim_offline_lknetf_nondiagr()¶
Offline assimilation of LKNETF for a single DA step using non-diagonal observation error covariance matrix.
PDAFlocal-OMI modules require fewer user-supplied functions and improved efficiency.
LKNETF [1] for a single DA step using non-diagnoal observation error covariance matrix. See
pyPDAF.PDAF3.assimilate()
for using diagnoal observation error covariance matrix. The filter type is set inpyPDAF.PDAF.init()
. This function should be called at each model time step.- User-supplied functions are executed in the following sequence:
py__prepoststep_state_pdaf
py__init_n_domains_p_pdaf
py__init_dim_obs_pdaf
py__obs_op_pdaf (for each ensemble member)
- loop over each local domain:
py__init_dim_l_pdaf
py__init_dim_obs_l_pdaf
py__prodRinvA_pdaf
py__likelihood_l_pdaf
core DA algorithm
py__obs_op_pdaf (only called with HKN and HNK options called for each ensemble member)
py__likelihood_hyb_l_pdaf
py__prodRinvA_hyb_l_pdaf
py__prepoststep_state_pdaf
References
- Parameters:
py__init_dim_obs_pdaf (Callable) – Initialize dimension of full observation vector
py__obs_op_pdaf (Callable) – Full observation operator
py__prepoststep_pdaf (Callable) – User supplied pre/poststep routine
py__init_n_domains_p_pdaf (Callable) – Provide number of local analysis domains
py__init_dim_l_pdaf (Callable) – Init state dimension for local ana. domain
py__init_dim_obs_l_pdaf (Callable) – Initialize local dimimension of obs. vector
py__prodrinva_l_pdaf (Callable) – Provide product of inverse of R with matrix A
py__prodrinva_hyb_l_pdaf (Callable) – Product R^-1 A on local analysis domain with hybrid weight
py__likelihood_l_pdaf (Callable) – Compute likelihood and apply localization
py__likelihood_hyb_l_pdaf (Callable) – Compute likelihood and apply localization with tempering
- Returns:
outflag – Status flag
- Return type:
int