pyPDAF.assim_offline_lnetf_nondiagr

pyPDAF.assim_offline_lnetf_nondiagr()

Offline assimilation of LNETF for a single DA step using non-diagnoal observation error covariance matrix.

See pyPDAF.PDAF3.assim_offline() for using diagnoal observation error covariance matrix. The non-linear filter is proposed in [1]. The filter type is set in pyPDAF.PDAF.init(). This function should be called at each model time step.

User-supplied functions are executed in the following sequence:
  1. py__prepoststep_state_pdaf

  2. py__init_n_domains_p_pdaf

  3. py__init_dim_obs_pdaf

  4. py__obs_op_pdaf (for each ensemble member)

  5. loop over each local domain:
    1. py__init_dim_l_pdaf

    2. py__init_dim_obs_l_pdaf

    3. py__likelihood_l_pdaf

    4. core DA algorithm

  6. py__prepoststep_state_pdaf

References

Parameters:
  • py__init_dim_obs_pdaf (Callable) – Initialize dimension of full observation vector

  • py__obs_op_pdaf (Callable) – Full observation operator

  • py__prepoststep_pdaf (Callable) – User supplied pre/poststep routine

  • py__init_n_domains_p_pdaf (Callable) – Provide number of local analysis domains

  • py__init_dim_l_pdaf (Callable) – Init state dimension for local ana. domain

  • py__init_dim_obs_l_pdaf (Callable) – Initialize local dimimension of obs. vector

  • py__likelihood_l_pdaf (Callable) – Compute likelihood and apply localization

Returns:

outflag – Status flag

Return type:

int